5 resultados para Surface adsorption

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study of the adsorption of two peptides at the octane–water interface. The first peptide, Lac21, exists in mixed monomer–tetramer equilibrium in bulk solution with an appreciable monomer concentration. The second peptide, Lac28, exists as a tetramer in solution, with minimal exposed hydrophobic surface. A kinetic limitation to interfacial adsorption exists for Lac28 at moderate to high surface coverage that is not observed for Lac21. We estimate the potential energy barrier for Lac28 adsorption to be 42 kJ/mol and show that this is comparable to the expected free energy barrier for tetramer dissociation. This finding suggests that, at moderate to high surface coverage, adsorption is kinetically limited by the availability of interfacially active monomeric “domains” in the subinterfacial region. We also show how the commonly used empirical equation for protein adsorption dynamics can be used to estimate the potential energy barrier for adsorption. Such an approach is shown to be consistent with a formal description of diffusion–adsorption, provided a large potential energy barrier exists. This work demonstrates that the dynamics of interfacial adsorption depend on protein thermodynamic stability, and hence structure, in a quantifiable way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO3), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of Manning-Oosawa counterion condensation is given an explicit statistical mechanical and qualitative basis via a dressed polyelectrolyte formalism in connection with the topology of the electrostatic free-energy surface and is derived explicitly in terms of the adsorption excess of ions about the polyion via the nonlinear Poisson-Boltzmann equation. The approach is closely analogous to the theory of ion binding in micelles. Our results not only elucidate a Poisson-Boltzmann analysis, which shows that a fraction of the counterions lie within a finite volume around the polyion even if the volume of the system tends towards infinity, but also provide a direct link between Manning's theta-the number of condensed counterions for each polyion site-and a statistical thermodynamic quantity, namely, the adsorption excess per monomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of the exchangeable apolipoprotein apolipophorin III (apoLp-III) to an egg phosphatidylcholine bilayer as a function of the concentration of diacylglycerol (DG) in the bilayer was studied by surface plasmon resonance spectroscopy. At a DG concentration of 2 mol % in the bilayer, the binding of apoLp-III reached saturation. Under saturating conditions, apoLp-III forms a closely packed monolayer approximately 55 A thick, in which each molecule of protein occupies approximately 500 A2 at the membrane surface. These dimensions are consistent with the molecular size of the apoLp-III molecule determined by x-ray crystallography, if apoLp-III binds to the bilayer with the long axis of the apoLp-III normal to the membrane surface. In the absence of protein, the overall structure of the lipid bilayer was not significantly changed up to 2.5 mol% DG. However, at 4 and 6 mol % DG, the presence of nonbilayer structures was observed. The addition of apoLp-III to a membrane containing 6 mol % DG promoted the formation of large lipid-protein complexes. These data support a two-step sequential binding mechanism for binding of apoLp-III to a lipid surface. The first step is a recognition process, consisting of the adsorption of apoLp-III to a nascent hydrophobic defect in the phospholipid bilayer caused by the presence of DG. This recognition process might depend on the presence of a hydrophobic sensor located at one of the ends of the long axis of the apoLp-III molecule but would be consolidated through H-bond and electrostatic interactions. Once primary binding is achieved, subsequent enlargement of the hydrophobic defect in the lipid surface would trigger the unfolding of the apolipoprotein and binding via the amphipathic alpha-helices. This two-step sequential binding mechanism could be a general mechanism for all exchangeable apolipoproteins. A possible physiological role of the ability of apoLp-III to bind to lipid structures in two orientations is also proposed.